# automatically generated by g-sorcery # please do not edit this file EAPI=8 REALNAME="${PN}" LITERALNAME="${PN}" REALVERSION="${PV}" DIGEST_SOURCES="yes" PYTHON_COMPAT=( python{3_11,3_12,3_13,3_14} ) DISTUTILS_USE_PEP517=standalone inherit python-r1 gs-pypi DESCRIPTION="RiskOptima is a powerful Python toolkit for financial risk analysis, portfolio optimization, and advanced quantitative modeling. It integrates state-of-the-art methodologies, including Monte Carlo simulations, Value at Risk (VaR), Conditional VaR (CVaR), Black-Scholes, Heston, and Merton Jump Diffusion models, to aid investors in making data-driven investment decisions." HOMEPAGE="https://github.com/JordiCorbilla/RiskOptima" LICENSE="MIT" SRC_URI="https://files.pythonhosted.org/packages/source/${REALNAME::1}/${REALNAME}/${REALNAME}-${REALVERSION}.tar.gz" SOURCEFILE="${REALNAME}-${REALVERSION}.tar.gz" RESTRICT="test" SLOT="0" KEYWORDS="~amd64 ~x86" IUSE="" DEPENDENCIES=">=dev-python/numpy-1.26.4[${PYTHON_USEDEP}] >=dev-python/pandas-2.1.4[${PYTHON_USEDEP}] >=dev-python/scipy-1.13.1[${PYTHON_USEDEP}] >=dev-python/statsmodels-0.14.2[${PYTHON_USEDEP}] dev-python/yfinance[${PYTHON_USEDEP}] >=dev-python/matplotlib-3.8.4[${PYTHON_USEDEP}] >=dev-python/scikit-learn-1.5.1[${PYTHON_USEDEP}] dev-python/xgboost[${PYTHON_USEDEP}] >=dev-python/seaborn-0.13.2[${PYTHON_USEDEP}] dev-python/squarify[${PYTHON_USEDEP}]" BDEPEND="${DEPENDENCIES}" RDEPEND="${DEPENDENCIES}"